

Roskear Primary and Nursery School Calculation policy

Introduction

This calculation policy has been written in-line with the programmes of study taken from the revised National Curriculum for Mathematics (2014) and EYFS Curriculum Guidance Framework. It provides guidance on appropriate calculation methods and progression. The content is set out in year groups under the following headings: addition, subtraction, multiplication, division and fractions.

Children will use mental methods as their first port of call when appropriate, but for calculations that they cannot do in their heads, they will need to use an efficient written method accurately and with confidence.

This mathematics calculation policy is a guide for all staff at Roskear Primary and Nursery school. It is designed to be used alongside any teaching resources that teachers wish to use and does not recommend one scheme over another, rather a variety of resources and an approach - The Mastery Approach. All staff have access to Maths No Problem (a linear curriculum), which provides a host of lesson plans, activities and ideas. It is a mathematics scheme in its own right but it is recommended that it is not adhered to in a strict manner. The school has also bought into Target Your Maths. NRich on line resources are excellent ways to support the learning of mathematics and should be used to tailor lessons to suit the needs of the pupils. All teachers have been given the scheme of work from Trinity Teaching School Alliance - White Rose Maths Hub based in Halifax. Staff are encouraged to base their planning around their recommended modules. These modules use the Singapore Maths Methods and are affiliated to the workings of the New Mathematics Curriculum that is now running throughout the school. It is a sequential programme of study that is underpinned by promoting fluency in number. It emphasises that all pupils must have a thorough grounding in the four basic rules of number before progressing on to the next level. This philosophy is evident in the White Rose scheme and is being adopted by staff at Roskear School. This complete understanding gives pupils more confidence in dealing with number activities and in turn, leads to mastery of the four operations.

At the centre of the mastery approach to the teaching of mathematics is the belief that all children have the potential to succeed. They should have access to the same curriculum content and, rather than being extended with new learning, they should deepen their conceptual understanding by tackling challenging and varied problems. Similarly with calculation strategies, children must not simply rote learn procedures but demonstrate their understanding of these procedures through the use of concrete and pictorial representations. In- turn meeting the three aims of the National Curriculum (Fluency, Problem solving and Reasoning)

The principle of the concrete - pictorial- abstract (CPA) approach is that children have a true understanding of a mathematical concept, they need to master all three phases. Reinforcement is achieved by going back and forth between these representations. For example if a child is working in the 'abstract,' 'proving' something in the concrete or pictorial. For the purposes of the pupils we refer to CPA as 'show it,' 'draw it' and 'explain it.'

Aims of the policy

To ensure consistency and progression in our approach to calculation.
Make teachers aware of the strategies that pupils are formally taught in each year group that will support them to preform mental and written calculations.

Supporting teachers in identifying appropriate pictorial representations and concrete materials.
To ensure that children develop an efficient, reliable, formal written method of calculation for all operations.

To ensure that children can use these methods accurately with confidence and understanding.
The policy only details the strategies; teachers must plan opportunities for pupils to apply these; for example, when solving problems, or where possible, opportunities somewhere else in the curriculum.

NC Statutory Requirements

Birth -11 months - notice changes in number of objects / images, sounds in groups of and up to 3
8-20 months - has some understanding that things exist even when out of sight
16-26 months - Begins to organise and categorise objects -sorting
22-36 months - knows that a group of things changes in quantity when something is added or taken away
$30-50$ months- separates a group of 3 or 4 objects in different ways beginning to recognise that the total is still the same
40-60 months -finds the total number of items in two groups by counting all of them
In practical activities and discussions begins to use the vocabulary involved in addition and subtraction
Concrete

Teaching Points:

- Put all objects together and count
- Find totals of 2 groups using objects in hoops
- Then total of 2 groups using objects and numerals in hoops
- Then ...total of 2 groups using objects and hoops and recording as a number sentence
- Then without hoops, with objects and record as a number sentence
- Fluency with counting requires counting from any numbers
- Use fingers (but avoid counting from one each time)
- Use numicon.

EYFS1- Subtraction

NC Statutory Requirements

Birth - 11 months notice changes in number of objects/ images, sounds in groups of and up to 3
8-20 months - has some understanding that things exist even when out of sight
16-26 month Begins to organise and categorise objects -sorting
22-36 months knows that a group of things changes in quantity when something is added or taken away
$\mathbf{3 0} \mathbf{- 5 0}$ separates a group of 3 or 4 objects in different ways beginning to recognise that the total is still the same 40-60 Understands subtraction as taking away objects from a group and counting on how many_are left. In practical activities and discussions begins to use the vocabulary involved in addition and subtraction

Concrete	Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used). $4-3=1$
Pictorial	Take away a number of objents fom the group, count what's left
Abstract	Introduce - and $=$ symbols Include vocabulary: 'difference' Relate to number line and introduce a bar model. $5-3=?$
Teaching	oints n.. start with group of objects and record the numeral. Take some away, record and count what's left cord) ake away 3 is 3 ' OR ' 3 less than 6 is 3 '. Emphasise JUMPING along number line .. look at number line: what do we need to do? bar model to support visualisation unting and reading numbers to 20 ubling using objects and numbers ving using objects and numbers ring using objects Adding and subtracting two single digit numbers referring to a number line

NC Statutory Requirements
ELG- Children count reliably with numbers from one to 20; place them in order; say which number is one more or
one less than a given number.
Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the
answer.
Count on from first group to add two groups of objects.
Concrete

EYFS2 - Subtraction

NC Statutory Requirements

ELG- Children count reliably with numbers from one to 20 , place them in order and say which number is one more or one less than a given number. Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer.

Concrete	What's the difference between 10 and 6? \square ITIT
Pictorial	Take away one from a number Using the bar model helps move from the concrete to the abstract \square
Abstract	Inverse use of number bonds $\begin{aligned} & 5-4=1 \\ & 10-7=3 \end{aligned}$

Teaching Points

- Model with numicon
- In order to calculate effectively children must know all the number bonds up to ten. This will enable them to jump back on the number line rather than count.
- Using a bead bar is also an effective way to show how to split smaller numbers up.
- Using the bar model will help pupils to understand the inverse concept.
- When counting the remaining amount, and when checking that the correct number have been taken away, model efficient counting in twos where necessary or arrayed numbers of ten for example.
- Model the checking process as this is built upon throughout the strategies and policy.
- When solving missing number problems, ensure that there is a variety of layout where there is a modelling of 'balancing calculations.
- Counting on (up) along the top of the number line.
- Counting back along the top of the number line

EYFS2 - Multiplication

NC Statutory Requirements

ELG- Children count reliably with numbers from one to 20 , place them in order and say which number is one more or one less than a given number. Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer. They solve problems, including doubling, halving and sharing.
Concrete

NC Statutory Requirements

ELG- Children count reliably with numbers from one to 20 , place them in order and say which number is one more or one less than a given number. Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer. They solve problems, including doubling, halving and sharing.

Concrete	Practically halving objects - both halves being exactly the same size - Start with play dough and things you can cut and then progress to practical objects. Eg: Pizza - cut in half to make two pieces - then add toppings, eg: 2 tomatoes - half of 2 is 1
Pictorial	Is that fair?
Abstract	$9 \div 3=?$ 9

Teaching Points

- Use counters of different colours
- When sharing you know how many groups you will have; you are working out how many are in each group.
- Don't over teach 'sharing'- Focus more on grouping
- Appropriate use of bar models can be introduced for more fluent pupils.

NC Statutory Requirements

- read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs
- represent and use number bonds and related subtraction facts within 20
- add and subtract one-digit and two-digit numbers to 20, including zero
- solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=$? -9

Concrete								
Pictorial	Children to represent the cubes using dots or crosses. They could put each part on a part whole model.	A bar model which encourages the children to count on, rather than count all.	1 11 21 31 41 51 61 71 2 81 91 1	 2 12 12 22 2 32 3 42 4 52 5 62 6 72 7 82 8 92		15 25 35 45 55 65 75 85 85		8 9 10 18 19 20 28.29 30 388 39 60 48 49 50 58 59 60 68 69 70 78 79 80 88 89 90 88 99 100
Abstract	$4+3=7$ What is 2 more than 4 ? What is the sum of 2 and 4 ? What is the total of 4 and 2 ?							

Teaching Points

- Counting forward /up in jumps on top of the line
- Model the checking process
- Ensure children are counting the jumps
- Working up from number bonds 5,6,7,10,20 memorise
- Realise the effect of adding zero

Year 1 Subtraction

NC Statutory Requirements

- read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs
- represent and use number bonds and related subtraction facts within 20
- add and subtract one-digit and two-digit numbers to 20 , including zero
- solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=?-9$

Concrete	Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used) Counting back using number lines. $6-2=4$
Pictorial	Draw and cross out the correct amount
Abstract	4+3=7 Pupils begin to use notation including missing number Counting backwards

Teaching Points

- When counting the remaining amount, check the correct number have been taken away.
- Model efficient counting in twos where necessary
- Model the checking process
- When solving missing numbers, ensure a variety of layout where there is modelling of 'balancing of calculations
- Realise effect of subtracting zero
- Count forward of top of number line; under for counting backwards.
- Appropriate use of discrete, continuous, comparable bar models to support understanding

Year 1 Multiplication

NC Statutory Requirements

- solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher

Concrete	Repeated grouping/repeated addition $\begin{aligned} & 3 \times 4 \\ & 4+4+4 \end{aligned}$ There are 3 equal groups, with 4 in each group.
Pictorial	? Children to represent the practical resources in a picture and use a bar model.
Abstract	$4+4+4=12$ Marked number line showing three jumps of four. $3 \times 4=12$

Teaching Points

- Use accessible language when using word problems
- Ensure pupils use contextual links
- Use concepts of arrays; links with doubling and repeated addition
- Tables progression- counting in 2,5 and 10
- Use a number line with clearly marked divisions before moving onto a partially marked number line.

Year 1 Division

NC Statutory Requirements

- solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher
Concrete

Teaching Points

- Children physically groups items and count.
- Encourage questions such as how many groups? How many are in each group?
- Model forming arrays to be organised systematically to aid counting when this develops into multiples
- Counting in 2,5 's and 10 's.
- Use a number line with clearly marked divisions before using a partially marked number line.

Year 2 Addition

NC Statutory Requirements

- solve problems with addition using concrete objects and pictorial representations, including those involving numbers, quantities and measures; applying their increasing knowledge of mental and written methods
- recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100
- add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones, a two-digit number and tens, two two-digit numbers, adding three one-digit numbers
- show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
- recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems

TO + TO using base 10
Continue to develop understanding of partitioning and place value. $36+25=61$

Pictorial	$\begin{array}{l}\text { Children to represent the base } 10 \\ \text { e.g. lines for tens and dot/crosses for ones. }\end{array}$

Children to represent the base 10 in a place value chart.

Abstract	$41+8=$ $\begin{aligned} & 1+8=9 \\ & 40+9=49 \end{aligned}$		$30+$ $5+5$ $50+$ + +	$\begin{aligned} & 20= \\ & 5=10 \\ & 10+1 \\ & 4 \\ & 48 \\ & \hline 49 \end{aligned}$	61 $\begin{array}{r} 36 \\ +25 \\ \hline 61 \\ \hline 1 \end{array}$	Formal

Teaching Point

- Counting forward in ones then tens. Suggesting 'number bonds' and related facts to make jumps
- Headings for columns are labelled
- Appropriateness of number at each stage e.g no carrying required

Year 2 Subtraction

NC Statutory Requirements

- solve problems with subtraction using concrete objects and pictorial representations, including those involving numbers, quantities and measures; applying their increasing knowledge of mental and written methods
- recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100
- add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones a two-digit number and tens, two two-digit numbers, adding three one-digit numbers
- show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
- recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems
Concrete \quad Finding the difference (using cubes, Numicon or other objects can also be used).
Calculate the difference between 8 and 5 .

Making 10 using ten frames. 14 - 5

Column method using base 10. 48-7=41

Teaching Points

- Include missing numbers in different forms such as shapes or letters to build on commutative facts: 70+30=100 100-
$\wedge=3030+$? $=100$
- Comparison bar models
- Variation-47-6=, 57-6=, 67-6=,77-6=
- Progress to number line without divisions
- To ensure clarity of the strategy subtract only the ones initially.

Year 2 Multiplication

NC Statutory Requirements

- recall and use multiplication facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers
- calculate mathematical statements for multiplication within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs
- show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot
- solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

Concrete	Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5=5 \times 2$
Pictorial	Children to represent the arrays pictorially. Represent concrete pictorally
Abstract	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$ Children to be encouraged to show the steps they have taken. $\begin{array}{r} 10 \times 4=40 \\ 5 \times 4=20 \\ 40+20=60 \end{array}$
Teaching	oints ild on partitioning skills to partition then multiply to strengthen links with place value te appropriateness of the number. Where they stay in the 'teens' to strengthen ability to multiply by 10

NC Statutory Requirements

- recall and use multiplication and division facts for the 2,3, 5 and 10 multiplication tables, including recognising odd and even numbers
- calculate mathematical statements for division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals ($=$) signs
- show that multiplication of two numbers can be done in any order (commutative) and division of one number by another is not
- solve problems involving division, using materials, arrays, repeated addition, mental methods, and division facts, including problems in contexts.

Concrete	Link division to multiplication. Explore sharing and grouping 0000 0000 00000
Pictorial	Pupils continue to explore division as sharing and grouping: $18 \div 3$ can be modelled as sharing -18 shared between 3 or modelling jumping back in threes to share in 'chunks' of 3:
Abstract	Write all the number sentences that can be created e.g $6 \times 3=18,3 \times 6=18,18 / 3=6,18 / 6=3$ Complete written divisions and show the remainder using r $24 \div 8=3$ dividend divisor quotient

Teaching Points

- Appropriateness of the number; begin with the numbers that do not have a remainder and build upon multiplication facts, then, change the divisor or amount and ask 'How many are left over?'

Year 3 Addition

NC Statutory Requirements

- add and subtract numbers mentally, including: a three-digit number and ones; a three-digit number and tens; a three-digit number and hundreds
- add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction
- estimate the answer to a calculation and use inverse operations to check answers
- solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.

Teaching Points

- Numbers initially crossing tens boundary within a three digit number, moving to crossing tens and hundreds in numbers up to 1000.
- Pupils begin to use number lines without given divisions.
- Starting with number at left hand side of number line. Jumping along the top of the line.
- Teaching point in example links to recognising number bonds and how smaller jumps, rather than jumping eight will help reinforce mental strategies.
- Variation: missing numbers

Year 3 Subtraction

NC Statutory Requirements

- add and subtract numbers mentally, including: a three-digit number and ones; a three-digit number and tens ; a three-digit number and hundreds
- add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction
- estimate the answer to a calculation and use inverse operations to check answers
- solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction
Concrete \quad Column method using base 10 and having to exchange.
41-26

Column method using place value counters.
234-88

Pictorial Represent the place value counters pictorially; remembering to show what has been exchanged.

Use known facts to solve 92-15=77

Complementary addition to solve $754-86=668$
Abstract \quad Formal column method. Children must understand what has happened when they have crossed out digits.

Raj spent $£ 391$, Timmy spent $£ 186$. How much more did Raj spend?

Calculate the difference between 391 and 18

Teaching Points

- Ensure a discrete teaching of mental strategies building upon informal written strategies of number lines and partitioning numbers to subtract tens from tens and units from units modelling and promoting the use of jottings.
- Note appropriateness of number here where 'exchanging' isn't required.
- Practical resources to help promote abstract 'exchange' through concrete understanding of place value practically. Modelling practical alongside formal written initially.
- Model subtracting from least significant figure (ones).
- Remember to use the inverse operation to check
- Pupils should start column subtraction without any exchange of 10,100 etc. Always use column headings to secure place value. Whilst partitioning at this point will help some pupils, staff must be aware that it can lead to future confusion when exchanging 10 s and is best avoided.

NC Statutory Requirements

- recall and use multiplication and division facts for the $2,3,4,5,6$ and 8 and 9 multiplication tables
- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
- solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects

Concrete	Partition to multiply using Numicon, base 10 or Cuisenaire rods. Formal column method with place value $6 \times 23=$ counters 4×15
Pictorial	Children to represent the counters/base 10, pictorially e.g. the image below.
Abstract	Mai had to swim 23 lengths, 6 times a week. How many lengths did she swim in one week? With the counters, Partioning 23x6=\mathbf{H} \mathbf{T} \mathbf{O} 2 3 \mathbf{X} 6 1 8 1 2 0 1 3 8$\begin{array}{r} 6 \times 23= \\ 23 \\ \times \quad 6 \\ \hline 138 \\ \hline 11 \end{array}$ Find the product of 6 and 23

Teaching Points

Through doubling children make connections with 2,4 , and 8 times tables
$9 \times 8=, 9 \times 80=, 9 \times 800=, 90 \times 8=, 900 \times 8=, ?=900 \times 8=, 72=$? $\times 8$
Expanded method is used in year 3 in preparation for the formal short multiplication method The number exchanged goes under the line

Year 3 Division						
NC Statutory Requirements - recall and use multiplication and division facts for the 3,4 and 8 multiplication tables - write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods - solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects						
	$12 \div 4$ Use of Iollipop sticks to form squares- whole squares are made because we are dividing by 4 . There are 3 whole squares					
Pictorial	$12 \div 4=3$ Children should be encouraged to use their times table facts; they could also groups on a number line. There are 3 whole squares,					
Abstract	How many 7's make 56? If I know... then I know...					
Teaching Points - The digits in the numbers used, initially, those that are being taught and reinforced through expected multiplication times tables knowledge.						

NC Statutory Requirements

- add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate
- estimate and use inverse operations to check answers to a calculation
- solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.

Concrete	$2343+1220=3563$
Pictorial	
Abstract	$$
Teaching - F - Th - O - T	Practice uilding on strategy from Year 3 moving to using numbers which, when added, remain within the 10,000 undary. rmal written strategy modelled with: H T U labelled in columns. ne digit per square. alculate from 'ones' (least significant figure). exchanged number goes under the line

Year 4 Subtraction

NC Statutory Requirements

- add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate
- estimate and use inverse operations to check answers to a calculation
- solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why
Concrete \quad Progressively move towards 4-digit
3 - and 4-digit where again, only one exchange is needed initially.
346-153=193
 from 4 easily? I need to exchange one of my tens for ten ones.

ㅁㅁ밈

Pictorial	Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make. (3) 6 iy \qquad -562 When confident, children can find their own way to record the exchange/regrouping. Just writing the numbers as shown here shows that the child understands the method and knows when to exchange/regroup.
Abstract	Progressing to subtraction of numbers to two decimal places in context (such as money f including $€$ and $\$$ as appropriate) Estimating answers: Rounding this calculation to nearest ten: $£ 210-£ 180=£ 30$

Teaching Point

- Don't use number line for HTU - HTU (only exception is something like 1,000-279) which would involve too many exchanges.
- Note that when modelling practically, and until secure, only one exchange per calculation is required.

NC Statutory Requirements

- recall multiplication and division facts for multiplication tables up to 12×12
- use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers
- recognise and use factor pairs and commutativity in mental calculations
- multiply two-digit and three-digit numbers by a one-digit number using formal written layout
- solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.

NC Statutory Requirements

- recall multiplication and division facts for multiplication tables up to 12×12
- use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers
- recognise and use factor pairs and commutativity in mental calculations
- multiply two-digit and three-digit numbers by a one-digit number using formal written layout
- solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.

Teaching Points

- Initially use divisors that pupils are secure with e.g 2,3,5
- To secure the procedure and concept use numbers that divide equally.
- When pupils are secure introduce 'carrying over'
- Progressing on to missing numbers

NC Statutory Requirements

- add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)
- add and subtract numbers mentally with increasingly large numbers
- use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

Teaching Points

- Progressively, and before moving to larger numbers, begin to explore written strategies where '2 exchanges' are needed:
- Ensure exchanging is recapped in depth, using PV counters to consolidate conceptual understanding.
- NC Statutory Requirements
- identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers
- know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers
- establish whether a number up to 100 is prime and recall prime numbers up to 19
- multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers
- multiply and divide numbers mentally drawing upon known facts
- divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- multiply and divide whole numbers and those involving decimals by 10,100 and 1000
- recognise and use square numbers and cube numbers, and the notation for squared (2) and cubed (3)
- solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes
- solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign
- solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates.

Concrete	\mathbf{x}	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10	
2	2	4	6	8	10	12	14	16	18	20	
3	3	6	9	12	15	18	21	24	27	30	
4	4	8	12	16	20	24	28	32	36	40	
5	5	10	15	20	25	30	35	40	45	50	
6	6	12	18	24	30	36	42	48	54	60	
7	7	14	21	28	35	42	49	56	63	70	
8	8	16	24	32	40	48	56	64	72	80	
9	9	18	27	36	45	54	63	72	81	90	
10	10	20	30	40	50	60	70	80	90	100	

Pictoral		
Abstract		$\begin{aligned} & 147 \times 6 \\ & 100 \times 6=600 \\ & 40 \times 6=240 \\ & 7 \times 6=42 \\ & =842 \end{aligned}$

Teaching Points

- Double $3 \times$ table gives you $6 \times$ table, $12 \times$ table.
- Double $2 \times$ table gives you $4 x$ table, $8 \times$ table
- Double $5 \times$ table gives you $10 \times$ table

NC Statutory Requirements

- identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers
- know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers
- establish whether a number up to 100 is prime and recall prime numbers up to 19
- multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers
- multiply and divide numbers mentally drawing upon known facts
- divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- multiply and divide whole numbers and those involving decimals by 10, 100 and 1000
- recognise and use square numbers and cube numbers, and the notation for squared (2) and cubed (3)
- solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes
- solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign
- solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates.

I have $£ 615$ and share it equally between 5 bank accounts. How much will be in each account? 615 pupils need to be put into 5 groups. How many will be in each group?
$615 \div 5=$
? = $615 \div 5$
Short division

Teaching Points

- Interpret the remainders within the context of the question.

Year 6 Addition

NC Statutory Requirements

- perform mental calculations, including with mixed operations and large numbers
- use their knowledge of the order of operations to carry out calculations involving the four operations
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

Calculating decimal numbers to three decimal places:

Teaching Points

- Note appropriateness of numbers: initially, when dealing with this size of numbers, not requiring numerous 'carrying' to ensure clarity and understanding of application of strategy.
- Model when writing the answer, and when writing numbers such as that shown, the use of commas: 678,029 and modelling reading the numbers within the separated groups of numbers.
- Reinforce and reiterate the value of each digit when talking about the number.
- Note in the example, the use of ' 0 ' as a place value holder here and as a digit within the decimal number itself: to reiterate the understanding of its importance and 'value'.

Year 6 Subtraction

NC Statutory Requirements

- perform mental calculations, including with mixed operations and large numbers
- use their knowledge of the order of operations to carry out calculations involving the four operations
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

Concrete
Place value counters

Pupils apply written subtraction skills to numbers up to and including three decimal places (3dp). These are presented in contextual situations such as units of measure
$6.1-0.4=5.7$

Abstract \quad Strategies build on those of Year 5 and involve starting numbers of up to 1,000,000 and progressing to 10,000,000.

Pupils apply their learning of subtraction strategies and combine these with other areas of learning to solve problems such as:

$$
\begin{gathered}
632,465+(745,676-325,534)=\text { progressing to } \\
8,675,509-(9,645,253-2,867,675)=
\end{gathered}
$$

Calculations and ranges of numbers are applied through worded problems including units of measure.
Teaching Points

- Model the use of brackets in multi-step problems identifying brackets as the initial step needed and combining this with an additional written strategy.
- Pupils encouraged to apply learning of subtraction strategies including estimation; choosing the most efficient methods and then checking answers.

Year 6 Multiplication

NC Statutory Requirements

- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
- divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context
- perform mental calculations, including with mixed operations and large numbers
- identify common factors, common multiples and prime numbers
- use their knowledge of the order of operations to carry out calculations involving the four operations

Concrete			
Pictorial			$=0.6$
Abstract	Formal Pupils progress towards multiplying Th H T U x T U and H T U. thx T using formal written method of long multiplication: $2314 \times 23=$ Informal (Building on year 5 partitioning strategy pupils can multiplication) Factor Pairs $\begin{aligned} & 17 \times 12=204 \\ & (17 \times 3) \times 2 \times 2 \\ & 51 \times 2=102 \times 2=204 \end{aligned}$	ess to multiplication of mmended to ensure a co value of digits: $£ 36.21$ n use factor pairs	ecimals, in the context of money is crete understanding of the concept 17 $\begin{array}{r} 7 \\ 0 \\ \hline 7 \end{array}$ o mentally solve long

Teaching Points

- Build from the 'teens' to 20s and reinforce efficiency where the number could apply x10 and doubling knowledge
- Be aware of how calculation maybe in different order. Progress onto missing numbers in the calculation.

Year 6 Division

NC Statutory Requirements

- divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context
- perform mental calculations, including with mixed operations and large numbers
- identify common factors, common multiples and prime numbers
- use their knowledge of the order of operations to carry out calculations involving the four operations

Teaching Points

- Ensure secure understanding of place holder and place value.

Year 1 - Fractions

Pupils should be taught to:

- Recognise, find and name a half as one of two equal parts of an object, shape or quantity.
- Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity.
Concrete

Teaching Points:

Year 2 - Fractions

Pupils should be taught to:

- Recognise, find, name and write fractions $\frac{1}{3}, \frac{1}{4}, \frac{2}{4}$ and $\frac{3}{4}$ of a length, shape, set of objects or quantity
- Write simple fractions for example, $\frac{1}{2}$ of $6=3$ and recognise the equivalence of $\frac{2}{4}$ and $\frac{1}{2}$.

Teaching Points:

Year 3- Fractions

Pupils should be taught to:

- Count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10
- Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators
- Recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators
- Recognise and show, using diagrams, equivalent fractions with small denominators

Concrete	- Shade the 100 square in, to show different amount of tenths. How many ways can you do this? Base ten
Pictorial	- Shade the diagram to continue the pattern. Complete the fractions to describe Bar model Here is a number line from $0-1$. Can you fill in the missing fractions on the numberline? Add and subtract fractions with the same denominator within one whole : Eg: $8 / 12+3 / 12=11 / 12$ $+$ \square $=$ \square
Abstract	- Finish the sequences: $\frac{1}{10}, \frac{2}{10}, \frac{3}{10},-\quad-\quad \begin{aligned} & \text { On a number line o to } 1 \text {, label: } \\ & 0.7, \frac{3}{10}, \frac{1}{10}, 0.9, \frac{10}{10} \end{aligned}$

Teaching Points:

Teaching point - add numerator - ensure children recognise what a whole looks like.

Year 4 - Fractions

Pupils should be taught to:

- Recognise and show, using diagrams, families of common equivalent fractions
- Count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten.
- Add and subtract fractions with the same denominator
Concrete

Teaching Points:

Year 5 - Fractions

Pupils should be taught to:

- Compare and order fractions whose denominators are all multiples of the same number
- Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths
- Add and subtract fractions with the same denominator and denominators that are multiples of the same number
- Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements as a mixed number

Teaching Points:

Year 6 - Fractions

Pupils should be taught to:

- Use common factors to simplify fractions; use common multiples to express fractions in the same denominator
- Compare and order fractions, including fractions > 1
- Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions; divide fractions by whole number; multiply fractions

Teaching Points:

FS2-Maths Vocabulary			
Adding and subtracting	Solving problems add, more, and make, sum, total altogether score double one more, two more, ten more... how many more to make...? how many more is... than...? take (away), leave how many are leftleft over? how many have gone? one less, two less... ten less... how many fewer is... than...? difference between is the same as		
answer right, wrong shapes what could we try next? how did you work it out?			
Problems involving 'real life' or money	count, sort group, set compare double half, halve pair count out, share out left, left over money coin penny, pence, pound price cost		
bume, different			
buy			
sell			
spend, spent			
pay			
change			
dear, costs more			
cheap, costs less, cheaper			
costs the same as			
how much...? how many...?			
total		\quad	
:---			

Year 1 Maths Vocabulary	
words new to Year 1 are in red	
Addition and subtraction	$\begin{array}{l}\text { Solving problems- Making decisions and } \\ \\ \text { +, add, more, plus } \\ \text { make, sum, total } \\ \text { altogether } \\ \text { score } \\ \text { double, near double } \\ \text { one more, two more... ten more } \\ \text { how many more to make...? } \\ \text { how many more is... than...? }\end{array}$
$\begin{array}{l}\text { method } \\ \text { jotting } \\ \text { answer } \\ \text { right, correct, wrong } \\ \text { what could we try next? } \\ \text { how did you work it out? } \\ \text { number sentence } \\ \text { sign, operation, symbol, equation } \\ \text { how much more is...? }\end{array}$	$\begin{array}{l}\text { pattern } \\ \text { puzzle } \\ \text { answer } \\ \text { right, wrong } \\ \text { what could we try next? } \\ \text { how did you work it out? } \\ \text { count out, share out, left, left over } \\ \text { number sentence }\end{array}$
sign, operation	

Year 2 Maths Vocabulary	
Words new to Year 2 are in red Addition and subtraction +, add, addition, more, plus make, sum, total altogether score double, near double one more, two more... ten more... one hundred more how many more to make...? how many more is... than...? how much more is...? -, subtract, take away, minus leave, how many are left/left over? one less, two less... ten less... one hundred less how many less is... than...? difference between half, halve $=$, equals, sign, is the same as tens boundary	Multiplication and division lots of, groups of x, times, multiply, multiplied by multiple of once, twice, three times, four times, five times... ten times... times as (big, long, wide and so on) repeated addition array row, column double, halve share, share equally one each, two each, three each... group in pairs, threes... tens equal groups of \div, divide, divided by, divided into, left, left over

Year 3 Maths Vocabulary	
Words new to Year 3 are in red Addition and subtraction +, add, addition, more, plus make, sum, total altogether score double, near double one more, two more... ten more... one hundred more how many more to make ...? how many more is... than ...? how much more is...? -, subtract, take (away), minus leave, how many are left/left over? one less, two less... ten less... one hundred less how many fewer is... than ...? how much less is...? difference between half, halve $=$, equals, sign, is the same as tens boundary, hundreds boundary	Multiplication and division lots of, groups of x, times, multiplication, multiply, multiplied by multiple of, product once, twice, three times, four times, five times... ten times... times as (big, long, wide and so on) repeated addition array row, column double, halve share, share equally one each, two each, three each... group in pairs, threes... tens equal groups of \div, divide, division, divided by, divided into left, left over, remainder
Solving problems-Making decisions and r pattern, puzzle calculate, calculation mental calculation method, strategy jotting answer right, correct, wrong what could we try next? how did you work it out? number sentence sign, operation, symbol, equation	ning

Year 4 Maths Vocabulary	
Words new to Year 4 are in red Addition and subtraction add, addition, more, plus, increase sum, total, altogether score double, near double how many more to make...? subtract, subtraction, take away, minus, decrease leave, how many are left/left over? difference between half, halve how many more/fewer is... than...? how much more/less is...? is the same as, equals, sign tens boundary, hundreds boundary inverse	Multiplication and division lots of, groups of times, multiplication, multiply, multiplied by multiple of, product once, twice, three times four times, five times... ten times times as (big, long, wide, and so on) repeated addition array row, column double, halve share, share equally one each, two each, three each... group in pairs, threes... tens equal groups of divide, division, divided by, divided into, divisible by remainder factor, quotient inverse
Solving problems pattern, puzzle calculate, calculation mental calculation method jotting answer right, correct, wrong what could we try next? how did you work it out? number sentence sign, operation, symbol, equation	

Year 5 Maths Vocabulary	
Words new to Year 5 are in red Addition and subtraction add, addition, more, plus, increase sum, total, altogether score double, near double how many more to make...? subtract, subtraction, take (away), minus, decrease leave, how many are left/left over? difference between half, halve how many more/ fewer is... than...? how much more/less is...? equals, sign, is the same as tens boundary, hundreds boundary units boundary, tenths boundary inverse	Multiplication and division lots of, groups of times, multiply, multiplication, multiplied by multiple of, product once, twice, three times four times, five times... ten times times as (big, long, wide, and so on) repeated addition array row, column double, halve share, share equally one each, two each, three each... group in pairs, threes... tens equal groups of divide, divided by, divided into, divisible by remainder factor, quotient, divisible by inverse
Solving problems pattern, puzzle calculate, calculation mental calculation method, strategy jotting answer right, correct, wrong what could we try next? how did you work it out? number sentence sign, operation, symbol, equation	

Year 6 Maths Vocabulary	
Words new to Year 6 are in red Addition and subtraction add, addition, more, plus, increase sum, total, altogether score double, near double Positive Negative Order of operations (BIDMAS) how many more to make...? subtract, subtraction, take (away), minus, decrease leave, how many are left/left over? difference between half, halve how many more/fewer is... than...? how much more/less is...? is the same as, equals, sign tens boundary, hundreds boundary units boundary, tenths boundary inverse	Multiplication and division lots of, groups of times, multiplication, multiply, multiplied by multiple of, product once, twice, three times four times, five times... ten times times as (big, long, wide, and so on) repeated addition array, row, column double, halve share, share equally one each, two each, three each... group in pairs, threes... tens equal groups of divide, division, divided by, divisor, divided into remainder factor, quotient, divisible by inverse Numerator Denominator Prime number Factors Multiples Highest common factor Lowest common factor Lowest common multiple Highest common multiple Ratio Proportion
Solving problems pattern, puzzle calculate, calculation mental calculation method, strategy jotting answer right, correct, wrong what could we try next? how did you work it out? number sentence sign, operation, symbol, equation I know this ...so.....	Shape Space and Measure Faces, vertices Quadrilaterals Circumference Diameter Imperial Metric Quadrants

